Glutathione levels modulate domoic acid induced apoptosis in mouse cerebellar granule cells.
نویسندگان
چکیده
Exposure of mouse cerebellar granule neurons (CGNs) to domoic acid induced cell death, either by apoptosis or by necrosis, depending on its concentration. Necrotic damage predominated in response to domoic acid above 0.1 microM. In contrast, cell injury with apoptotic features (assessed by Hoechst staining and DNA laddering assay) was evident after exposure to lower concentrations of domoic acid (< or = 0.1 microM). The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptor antagonist 2,3-dihydroxy-6-nitro-sulfamoylbenzo [f] quinoxaline, but not the N-methyl-D-aspartate receptor antagonist MK-801, prevented domoic acid-induced apoptosis. To evaluate the role of oxidative stress in domoic acid-induced apoptosis, experiments were carried out in CGNs isolated from wild-type mice (Gclm (+/+)) and mice lacking the modifier subunit of glutamate-cysteine ligase, the first and rate-limiting step of glutathione (GSH) biosynthesis (Gclm (-/-)). CGNs from Gclm (-/-) mice have very low levels of GSH and were more sensitive to domoic acid-induced apoptosis and necrosis than Gclm (+/+) CGNs. The antioxidant melatonin (200 microM) and the membrane-permeant GSH delivery agent GSH ethyl ester (2.5 mM) prevented domoic acid-induced apoptosis. Domoic acid increased formation of reactive oxygen species but did not affect intracellular GSH levels. Domoic acid also increased cytosolic and mitochondrial calcium levels, increased oxidative stress in mitochondria, and altered mitochondrial membrane potential, which ultimately caused cytochrome c release, activation of caspase-3, and degradation of poly (ADP-ribose) polymerase. These results indicate that low concentrations of domoic acid cause apoptotic neuronal cell death mediated by oxidative stress.
منابع مشابه
Neurotoxicity of domoic Acid in cerebellar granule neurons in a genetic model of glutathione deficiency.
This study investigated the role of cellular antioxidant defense mechanisms in modulating the neurotoxicity of domoic acid (DomA), by using cerebellar granule neurons (CGNs) from mice lacking the modifier subunit of glutamate-cysteine ligase (Gclm). Glutamate-cysteine ligase (Glc) catalyzes the first and rate-limiting step in glutathione (GSH) biosynthesis. CGNs from Gclm (-/-) mice have very l...
متن کاملOxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance
Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in red...
متن کاملScreening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons
Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...
متن کاملThe role of free radicals and p53 in neuron apoptosis in vivo.
Apoptosis is a mechanism of cell death operative in the normal development and regulation of vertebrate tissues and organ cellularity. During the postnatal development of the mouse cerebellum, extensive granule neuron apoptosis occurs that may regulate the final granule cell to Purkinje cell stoichiometry observed in the adult. Cerebellar granule cells are highly sensitive to genotoxic agents s...
متن کاملMechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents.
In this study investigation is made on whether oxidative stress produced by treatment with hydroxyl radicals can induce apoptosis in rat cerebellar granule cells. The protective effects of Ginkgo biloba extract (EGb761) and its active constituents against apoptosis are also examined. The results show that hydroxyl radicals generated by the Fenton reaction induced apoptosis in cerebellar granule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2007